

Oulunliikenne.fi
SERVICE DOCUMENTATION

 1

Table of Contents

Introduction .. 2

Architecture .. 3
User interface .. 4
API Gateway .. 5
Digitransit APIs .. 6
Oulunliikenne APIs ... 7

Carparks API .. 9
Bicycles API ... 11
Cameras API .. 13
Eco-counters API ... 15
Harja API ... 17
Roadworks API .. 21
Disruptions API ... 23
TMS API .. 24
Weather API ... 27
Digitraffic API .. 30
Fluency API ... 35
TPM API .. 38
CDA API ... 40
CMA API .. 42
Maps API ... 43
GTFS API .. 45
HFP API ... 47
Road-signs API .. 49

Infrastructure .. 51

Environments .. 52

Deployment .. 53

 2

Introduction

The oulunliikenne.fi service is built on top of the Digitransit journey planner platform,
provided by HSL, the Finnish Transport Agency and TVV LMJ Oy. The Digitransit platform
provides the runtime environment that serves as the base for the oulunliikenne.fi service. It
is hosted and maintained by Digitransit on Microsoft Azure. The oulunliikenne.fi service
extends the base functionality of this environment by providing additional information and
services for travellers in the Oulu region.

The oulunliikenne.fi service uses its own version of the open-source Digitransit UI, which is a
React-based user interface for communicating with a collection of APIs that provide the
journey planner functionality. These APIs constitutes the interface towards the Digitransit
runtime environment that the oulunliikenne.fi service extends and adds functionality to. All
oulunliikenne.fi services are hosted on Amazon Web Services.

 3

Architecture

The high-level architecture illustrated in Figure 1 shows the difference between the base
Digitransit environment on left and the oulunliikenne.fi service on the right. In Digitransit,
the user interface component communicates directly with the API layers of the backed
services, while in oulunliikenne.fi there is a gateway component between the user interface
and the API layers that handles routing the API calls to the correct services.

Figure 1: High-level architecture diagram

While this oversimplification of the architecture does not provide any implementation
details, it shows one of the key traits between the environments that allows the
oulunliikenne.fi service to extend the base functionality of the Digitransit platform.

The oulunliikenne.fi service can thus be divided into 4 main component groups:

1. User interface
2. API Gateway
3. Digitransit APIs
4. Oulunliikenne APIs

 4

User interface

The user interface is based on the open-source Digitransit UI component, modified for the
needs of oulunliikenne.fi. It is a React JS user interface that is configurable to some extent
for different cities using configuration files. However, the modifications and additions to the
user interface for the oulunliikenne.fi service are so broad and, in some cases, complicated,
that the simple extendibility built into the software was not enough. As a result, the
Digitransit UI project on GitHub has been forked into Oulunliikenne Digitransit UI and is
being developed independently.

The initial software architecture largely dictates how new features are added and existing
ones modified. All changes are created as separate React-components, where possible, to
keep the updateability with the parent repository, in order to bring in new features
developed in the Digitransit UI.

 5

API Gateway

The API gateway acts as a proxy between the UI, Digitransit Routing API and the
oulunliikenne.fi microservices. The gateway itself is a GraphQL API that combines the other
APIs into a single interface for the UI and any 3rd. party that wishes to use the data provided
through the API. That is to say, the API is also an open data provider for data distributed by
Oulunliikenne.

The illustration in Figure 1 showed that all the communication between the UI and the APIs
goes through the gateway, but this is not actually the case. There are APIs that the UI uses
directly, namely:

• Geocoding API - Provides a way to perform address searches and address lookups
(also known as geocoding and reverse geocoding)

• Map API - Provides raster map images (background map tiles) as well as vector map
tiles for stops and other points of interests like ticket sales positions, city bike
stations and park and ride areas

• Service Alerts API - Provides HSL's disruption information in the GTFS-RT Service
Alerts format and cancelled trips as Trip Updates

• Trip Updates API - Provides real-time trip progress and schedule deviations
(predictions) in the GTFS-RT Trip Updates format

• High Frequency Positioning API - Provides real-time vehicle locations in a JSON
format over MQTT (not in use by oulunliikenne.fi as it has an alternative
implementation)

These APIs are single purpose APIs and use different technologies for communication and
data transfer than the Routing API, which is a GraphQL API that provides a way to plan
itineraries and query public transport related information about routes, stops and
timetables.

The UI architecture is designed around the use of the Routing API, from where it fetches
most of the data, while the other APIs are more complementary data sources. This design
choice led to the implementation where the API gateway serves only the Routing API data
from Digitransit and complements it with data from other sources provided by
Oulunliikenne, as it was the best design to implement without disrupting the logical
workflows of the UI component.

Likewise, all oulunliikenne.fi microservices are not used only through the API gateway, some
also provide additional APIs that are used directly by the UI. More on this below in the
Oulunliikenne APIs section.

The API gateway is built using Apollo and uses schema stitching to combine the numerous
GraphQL APIs into one single API for the UI to use. This allows all microservices to be
developed and run independently and then configured into the gateway, which handles
routing the API requests to the underlaying APIs based on the combined schema definition
of all the attached APIs.

 6

Digitransit APIs

For more information about the Digitransit APIs, please read the official documentation.

 7

Oulunliikenne APIs

The microservice architecture of the oulunliikenne.fi APIs illustrated in Figure 2 shows all the
services and how they are connected to each other as well as to 3rd party services.

Figure 2: Microservice architecture of oulunliikenne.fi

Most microservices are built using the Serverless framework with AWS as the provider, but
some services, or part of the services, are built using Docker containers due to technical
limitations with the serverless architecture. It is possible, with relatively small effort, to
convert any or all microservices to use Docker instead of Serverless, if it is preferred.

The microservices utilize many other AWS services for e.g., databases, event queues and file
storage, which ties them to the AWS ecosystem, but the services are, for the most part, built

 8

to work independently which makes it possible to migrate them to use other technologies
as well. One benefit of the Serverless framework is that is supports the other major cloud
platforms too, i.e. Microsoft Azure and Google Cloud. While it requires some changes to
configurations and permissions schemes, it is possible to re-deploy the entire system to
another cloud providers ecosystem. Some technical solutions might not be directly
transferrable to another provider, due to implementation differences between the
providers, but for the most part it is a straightforward process.

The main API architecture used in all services is GraphQL, due to its dynamic nature and
abilities to merge multiple APIs into one for the API Gateway. Some services are using REST
APIs, especially for integrations with 3rd. party services, and they are usually not exposed
directly to the API consumer, but instead work as data sources for the GraphQL APIs,
allowing them to expose the data, or parts of the data, in a more structured way across all
services.

The main programming language used is NodeJS, as it is supported natively by AWS Lambda
and works seamlessly with Docker as well. Using the same language and software
architecture across all microservices makes understanding and adopting of the services
much easier and efficient.

 9

Carparks API

The Carparks API provides information about carparks in the city of Oulu, their location,
real-time space availability and optional pricing information as seen in Figure 3.

Figure 3: Carparks in the city of Oulu

At the time of writing, the carparks are shown independently and are not used in any
journey planning queries that would allow the user to plan a route by using the carparks as a
part of the journey.

Most carparks are fetched from a 3rd. party API managed by YSP and these will have real-
time space availability shown and updated every minute. Other carparks are managed
locally by the service and do not have any space information. Any pricing information shown
for carparks is not fetched from any source, but locally managed in the service.

All carparks are stored by the service in a NoSQL database.

The Carparks API is built using the Serverless framework and consists of the following:

• GraphQL API
o Public API used by the API Gateway
o Queries for fetching all available carparks as well as individual carparks o

Schema and data models can be viewed here
• Scheduled events

 10

o Update space availability
§ Timed event that runs every minute
§ Fetches current space availability for all carparks from the YSP API

o Synchronize carparks
§ Not run automatically at the moment, can be run manually

§ Synchronizes the carparks from the YSP API
§ Only needed when new carparks are added or removed

o Create GeoJSON of carpark locations
§ Not run automatically at the moment, can be run manually
§ Generates a GeoJSON structure for the carpark locations to be used

by the Maps API when UI renders them on the map
§ Only needed when new carparks are added or removed

The Carparks API architecture is illustrated in Figure 4.

Figure 4: Carparks API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS DynamoDB
- AWS S3
- GraphQL
- SOAP
- NodeJS

 11

Bicycles API

The Bicycles API provides information about city bike stations in the city of Oulu, their
location and real-time availability as seen in [FIGURE].

City bike stations are fetches real-time from the Nextbike API when queried through the
Bicycles API and each station has the real-time availability of how many bikes are currently
at the station as well as the empty spaces available to leave a bike at.

The bicycle station can be used as a part of the journey planning when searching for routes.
This feature is available through Digitransit has it also has a direct integration with Nextbike
APIs.

The Bicycles API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway
o Queries for fetching all available bicycle stations as well as individual ones
o Schema and data models can be viewed here

- Scheduled events
o Create GeoJSON of bicycle station locations

§ Timed event run nightly
§ Generates a GeoJSON structure for the bicycle station locations to be

used by the Maps API when UI renders them on the map

The Bicycles API architecture is illustrated in Figure 5.

Figure 5: Bicycles API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

 12

Additionally, the Bicycles API includes static resources in GeoJSON format for displaying
different kinds if bicycle routes in the Oulu area as seen in Figure 6. These are generated
from shapefiles provided by Oulunliikenne and used by the Maps API when UI renders them
on the map.

Figure 6: Bicycle routes in the Oulu region

 13

Cameras API

The Cameras API provides near real-time traffic camera captures and locations of cameras in
the Oulu region as seen in Figure 7.

Figure 7: Traffic cameras in the Oulu region

The traffic camera images come from two different sources; the Digitraffic service operated
by Traffic Management Finland, and from cameras operated by Viria Oy. The
oulunliikenne.fi service fetches new camera images from Digitraffic every minute, but
Digitraffic determines the final refresh interval of the images which is around 15 minutes.
Viria sends their camera images to the oulunliikenne.fi service and the refresh interval is
thus completely based on that interval. The image files for Digitraffic sourced images are
hosted by Digitraffic, while the image files sent by Viria are hosted by oulunliikenne.fi.

The traffic camera locations for Digitraffic sourced camera images comes from the Digitraffic
API and they are updated in the oulunliikenne.fi service on a nightly basis, which means
either newly added cameras or removed ones will update once a day. Camera locations for
Viria sourced camera images is managed locally in the oulunliikenne.fi service. Viria provides
the information in an Excel file which is imported into a NoSQL database that hold the
camera information.

The Cameras API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway

 14

o Queries for fetching all available cameras including current images as well as
individual ones, also supports querying cameras by source

o Schema and data models can be viewed here
- REST API

o Used by Viria to send traffic camera images to the service
- Queue

o Used to process camera images received by Viria to offload the work from
the REST API into an asynchronous service

- Scheduled events
o Create GeoJSON of bicycle station locations

§ Timed event run nightly
§ Generates a GeoJSON structure for the traffic camera locations to be

used by the Maps API when UI renders them on the map

The Cameras API architecture is illustrated in Figure 8.

Figure 8: Cameras API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS SQS
- AWS DynamoDB
- AWS S3
- GraphQL
- REST
- NodeJS

 15

Eco-counters API

The Eco-counters API provides information about pedestrian and bicycle path usage for
defined locations in the Oulu region as seen in Figure 9.

Figure 9: Eco-counters in the Oulu region

The API provides eco-counters from three different sources:
1. The Eco Counter company that provides counter hardware on location and APIs to

retrieve information
2. Local counters maintained by Oulunliikenne which report usage to this API

individually
3. The Traffic Performance Monitoring API, also maintained by Oulunliikenne, which

reports usage based on counters in traffic lights in the Oulu region

The Eco-counters API is built using the Serverless framework and consists of the following:

• GraphQL API
o Public API used by the API Gateway
o Queries for fetching all available eco-counter locations as well as statistics for

a selected time interval
o Schema and data models can be viewed here

• REST API
o Used by local eco-counters to send usage data to the service

• Scheduled events
o Create GeoJSON of eco-counter locations

 16

§ Timed event run nightly
§ Generates a GeoJSON structure for the traffic camera locations to be

used by the Maps API when UI renders them on the map
o Update usage data from TPM API

§ Timed event run every minute
§ Fetches new data for all registered eco-counter devices in the NoSQL

database and stores the usage data
• Stream events

o Aggregate usage data for defined time intervals
§ Both local and TPM based eco-counter usage data is stored in a

NoSQL database and all changes to the data is streamed to a Lambda
function that calculates aggregations of the data and stores it into
different database tables

§ The aggregation tables are used by the GraphQL API to fetch the
selected time interval without having to query the entire data set

The Eco-counters API architecture is illustrated in Figure 10.

Figure 10: Eco-counters API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

 17

Harja API

The Harja API provides information about performed maintenance tasks and the real-time
location of maintenance vehicles in the Oulu region. The completed tasks available in the
oulunliikenne.fi service as coloured geometry lines drawn on top of the map following the
road network. The different colours represent the last completed task as seen in Figure 11.

Figure 11: Road maintenance tasks in the Oulu region

At the time of writing, the maintenance tasks recorded are for the winter months and
consists of:

- Snow ploughing
- Anti-skid
- Trimming of surface
- Brushing of surface

All information about completed maintenance tasks and vehicle locations are provided by
Autori through a REST API in the service. The API follows the Finnish Transport
Infrastructure Agency’s Harja API definition and the service is also named after that API. The
Harja API uses only two of the endpoints defined; one for receiving real-time vehicle
locations, and the other for completed maintenance tasks.

Real-time vehicle positions are written both to a NoSQL database and to the AWS IoT
service. The database is used for retrieving past positions of the vehicles as statistical data
through the GraphQL API, while the IoT service is used for real-time communication of the
current vehicle positions to any and all users currently using the oulunliikenne.fi service. The
IoT service provides a message broker implementation based on the MQTT connectivity

 18

protocol, for lightweight publish/subscribe functionality, that is able to serve all users in
real-time. This is the same technology used for the real-time positions of public
transportation vehicles in the HFP API.

Completed maintenance tasks are written into a NoSQL database table from where they are
streamed to an AWS Lambda function that writes them to an AWS Kinesis stream, which in
turn uses a fan-out pattern to provide the tasks to any and all listeners for processing. There
are two listeners for the Kinesis stream; the first replicates the task into the development
environment, as Autori can only send data to one environment, the other maps the task
geometry to the road geometry so that the task can be shown on the map as a section of
the road that has been maintained.

The mapping of task geometries is based on finding the closest road geometry for the
maintenance task geometry points that Autori sends. Every task has only got 2 geometry
points when data is received from Autori, and to be able to draw a line string on the map for
the section of the road that the maintenance task is for, we need more points that follow
along the road. Tasks are divided into 2 types, the main bicycle routes in the Oulu area and
routes maintained by the ELY Centre of North Ostrobothnia. Both task types have their own
geometries, the first maintained by Oulunliikenne and the second by the Finnish Transport
Infrastructure Agency. The mapping algorithm chooses the correct geometry by the task
type and then finds the closest geometry by measuring the distance between the start and
end points for each of the geometries included. The algorithm also compares the points
within a longer geometry line, in order to also find partial matches if the task has only been
performed for a small section of the road. The algorithm allows for a 50-meter radius
around both the start and end points as the two points received for the task are not always
very accurate as they are based on GPS coordinates from the maintenance vehicles.

The road geometries are pre-processed and formatted into GeoJSON LineString features to
make it easier for the mapping algorithm to handle them consistently.

The Harja API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway
o Queries for fetching completed maintenance tasks and maintenance vehicle

positions for a time interval
o Schema and data models can be viewed here

- REST API
o Used by Autori to send data to the service

- Scheduled events
o Create GeoJSON of completed maintenance tasks for past 3 days

§ Timed event run every minute
§ Generates a GeoJSON structure for the maintenance task geometry to

be used by the Maps API when UI renders them on the map
- Stream events

o Streams maintenance tasks from AWS DynamoDB to AWS Kinesis

 19

§ All maintenance tasks written to AWS DynamoDB are streamed to an
AWS Lambda function that writes them into an AWS Kinesis stream
which uses a fan-out pattern to process the data for different
purposes

§ AWS DynamoDB only allows a small amount of stream handlers,
which is why AWS Kinesis is used for fan-out.

o Maps maintenance task geometries from AWS Kinesis stream
§ All maintenance tasks received from Autori need to be mapped

against a predefined geometry that can be used to draw the
completed tasks on the map

§ Autori sends only 2 geometry points for each completed task, which
need to be mapped to a complete geometry line string that follows
the section of the road that the task was for

§ The mapped geometry is written back into the AWS DynamoDB table
to be used both by the GraphQL API and the GeoJSON event handler

o Replicates maintenance tasks from AWS Kinesis stream into development
environment

§ Autori can only send data to the production environment, so the
incoming maintenance tasks in production are replicated in AWS
DynamoDB for the development environment by streaming them
from AWS Kinesis and writing them into the development AWS
DynamoDB table using an AWS Lambda function

- MQTT message broker
o Delivers real-time maintenance vehicle positions to users

The Harja API architecture is illustrated in Figure 12.

 20

Figure 12: Harja API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- AWS DynamoDB
- AWS Kinesis
- AWS IoT
- GraphQL
- REST
- MQTT
- NodeJS

 21

Roadworks API

The Roadworks API provides information about ongoing roadworks in the Oulu region as
seen in Figure 13.

Figure 13: Roadworks in the Oulu region

The roadwork details come from the national Digitraffic service operated by Traffic
Management Finland. The Roadworks API fetches the roadwork details through the
oulunliikenne.fi Digitraffic API which filters the roadworks found in the national Digitraffic
service to include only ones in the Oulu region.

The Roadworks API updates a GeoJSON file for the roadwork locations once every minute
from the Digitraffic API, which in turn caches the roadworks found in the Oulu region for the
same amount of time. This is done both to prevent high traffic peaks to the national
Digitraffic service and to improve the performance of loading the roadwork details in the
service, as Digitraffic always returns all roadworks nationwide.

Roadworks are not currently used as a part of the journey planning, e.g., to find alternative
routes where roadworks affect the travel time significantly.

The Roadworks API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway

 22

o Queries for fetching all ongoing roadworks as well as individually from the
Digitraffic REST API

o Schema and data models can be viewed here
- Scheduled events

o Create GeoJSON of ongoing roadworks
§ Timed event run every minute
§ Generates a GeoJSON structure for the locations to be used by the Maps
API when UI renders them on the map

The Roadworks API architecture is illustrated in Figure 14.

Figure 14: Roadworks API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

 23

Disruptions API

The Disruptions API provides information about any disruptive maintenance, construction
work or events going on in the Oulu region that may hinder or slow down public
transportation as well as car-, bicycle- and pedestrian traffic as seen in Figure 15.

Figure 15: Disruptions in the Oulu region

Disruption data comes from two different sources; the national Digitraffic service operated
by Traffic Management Finland, and disruptions managed by Oulunliikenne.

The Disruptions API fetches the disruption details from the national Digitraffic service
through the oulunliikenne.fi Digitraffic API which filters the results to include only ones in
the Oulu region. These are cached for 1 minute in the API. The Digitraffic disruptions are
usually related to maintenance work where roads and/or lanes are closed.

Disruptions managed by Oulunliikenne are fetched from Contentful and they created and
updated from a separate tool developed for purpose. The disruptions are saved to
Contentful from this tool and then fetched from there real-time when accessed in the
oulunliikenne.fi service.

The Disruptions API creates a GeoJSON file for all locations once every minute, to be used by
the Maps API when UI renders them on the map. The Digitraffic API caches the disruptions
also for one minute to both to prevent high traffic peaks to the national Digitraffic service
and to improve the performance of loading the disruption details in the service, as
Digitraffic always returns all disruptions nationwide. Disruptions fetched from Contentful
are always the latest data available when generating the GeoJSON.

Disruptions are not currently used as a part of the journey planning, e.g., to find alternative
routes where any disruption affect the travel time significantly.

The Disruptions API is built using the Serverless framework and consists of the following:

 24

- GraphQL API
o Public API used by the API Gateway
o Queries for fetching all current disruptions as well as individually and

separated by the source type
o Schema and data models can be viewed here

- Scheduled events
o Create GeoJSON of current disruptions

§ Timed event run every minute
§ Generates a GeoJSON structure for the locations to be used by the

Maps API when UI renders them on the map

The Disruptions API architecture is illustrated in Figure 16.

Figure 16: Disruptions API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

TMS API

The Traffic Monitoring System API (TMS) provides information about TMS/LAM stations in
the Oulu region as seen in Figure 17.

 25

Figure 17: TMS stations in the Oulu region

The TMS API fetches the information from the national Digitraffic service operated by Traffic
Management Finland. The details are fetched through the oulunliikenne.fi Digitraffic API
which filters the results found in the national Digitraffic service to include only ones in the
Oulu region.

The TMS API updates a GeoJSON file for the TMS-station locations once every day from the
Digitraffic API, which in turn caches them for the same amount of time. This is done both to
prevent high traffic peaks to the national Digitraffic service and to improve the performance
of loading the TMS-station details in the service, as Digitraffic always returns all TMS-
stations nationwide. The data provided for each individual TMS-station is fetched in near
real-time and cached for 1 minute in the Digitraffic API. The national Digitraffic service
dictates when the individual sensor values for each TMS-station is actually updated.

TMS-stations are not currently used as a part of the journey planning, e.g., to find
alternative routes where traffic congestion affect the travel time significantly.

The TMS API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway
o Queries for fetching all TMS-stations and their data as well as individually
o Schema and data models can be viewed here

- Scheduled events
o Create GeoJSON of all TMS-stations

§ Timed event run every day
§ Generates a GeoJSON structure for the locations to be used by the Maps
API when UI renders them on the map

 26

The TMS API architecture is illustrated in Figure 18.

Figure 18: TMS API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

 27

Weather API

The Weather API provides information about road weather conditions in the Oulu region as
seen in Figure 19 and Figure 20.

Figure 19: Road weather stations in the Oulu region

Figure 20: Road weather conditions in the Oulu region

The Weather API fetches the information from the national Digitraffic service operated by
Traffic Management Finland. The details are fetched through the oulunliikenne.fi Digitraffic
API which filters the results found in the national Digitraffic service to include only ones in
the Oulu region.

 28

The Weather API updates two GeoJSON files for the Maps API, one for the road weather-
station locations once every day, and another for the road weather conditions once every
minute, to be used by the Maps API when UI renders them on the map. The source data is
cached in the Digitraffic API both to prevent high traffic peaks to the national Digitraffic
service and to improve the performance of loading the details in the service, as Digitraffic
always returns all stations and conditions nationwide. The data provided for each individual
weather-station or road condition is fetched in near real-time and cached for 1 minute in
the Digitraffic API. The national Digitraffic service dictates when the individual sensor values
for are actually updated.

The Weather API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway
o Queries for fetching all weather-stations and road conditions including their

data as well as individually
o Schema and data models can be viewed here

- Scheduled events
o Create GeoJSON for weather-stations

§ Timed event run every day
§ Generates a GeoJSON structure for the locations to be used by the

Maps API when UI renders them on the map
o Create GeoJSON for road conditions

§ Time event run every minute
§ Generates A GeoJSON structure for the road condition geometry to be

used by the Maps API when UI renders them on the map

The Weather API architecture is illustrated in Figure 21.

Figure 21: Weather API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch

 29

- AWS S3
- GraphQL
- REST
- NodeJS

 30

Digitraffic API

The Digitraffic API works a proxy API to the national Digitraffic service operated by Traffic
Management Finland. The purpose of this proxy is to both be able to filter data only
relevant to oulunliikenne.fi and to cache the data for faster retrieval and at the same time
reduce traffic load to the Digitraffic service caused by oulunliikenne.fi users.

The Digitraffic API only implements those API endpoints that are needed by oulunliikenne.fi
and it keeps the endpoint URLs and data models of the source intact, which means that the
documentation provided by Digitraffic is accurate for the endpoints this API implements.

The Digitraffic API is a REST API implemented using the Serverless framework and it consists
of the following:

- API Gateway
o Public API used by many of other the Oulunliikenne APIs

- Lambda functions for each of the APIs
o Metadata APIs

§ Get TMC locations as GeoJSON
§ Get traffic camera stations as GeoJSON
§ Get TMS stations as GeoJSON
§ Get TMS sensors
§ Get road weather stations as GeoJSON
§ Get road weather forecast sections as GeoJSON
§ Get variable road sign codes

o Data APIs
§ Get roadworks as Datex2
§ Get roadwork by situation ID as Datex2
§ Get traffic disorders as Datex2
§ Get traffic disorder by situation ID as Datex2
§ Get traffic camera data
§ Get traffic camera data by ID
§ Get TMS data
§ Get TMS data by ID
§ Get road weather station data
§ Get road weather station data by ID
§ Get road condition data
§ Get variable road sign data
§ Get variable road sign data by ID

- Scheduled events
o Update locations

§ Time event run every night
§ Keeps an updated version of TMC locations from the Finnish

Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update forecast sections
§ Time event run every night

 31

§ Keeps an updated version of forecast sections from the Finnish
Transport Infrastructure Agency on S3 with only Oulu specific sections

o Update camera stations
§ Time event run every night
§ Keeps an updated version of camera stations from the Finnish

Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update TMS stations
§ Time event run every night
§ Keeps an updated version of TMS stations from the Finnish Transport

Infrastructure Agency on S3 with only Oulu specific locations
o Update TMS sensors

§ Time event run every night
§ Keeps an updated version of TMS sensors from the Finnish Transport

Infrastructure Agency on S3
o Update weather stations

§ Time event run every night
§ Keeps an updated version of road weather stations from the Finnish

Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update roadworks
§ Time event run every minute
§ Keeps an updated version of ongoing/planned roadwork data from

the Finnish Transport Infrastructure Agency on S3 with only Oulu
specific locations

o Update traffic disorders
§ Time event run every minute
§ Keeps an updated version of active traffic disorder data from the

Finnish Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update camera data
§ Time event run every minute
§ Keeps an updated version of traffic camera data from the Finnish

Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update TMS data
§ Time event run every minute
§ Keeps an updated version of TMS data from the Finnish Transport

Infrastructure Agency on S3 with only Oulu specific locations
o Update weather data

§ Time event run every minute
§ Keeps an updated version of road weather data from the Finnish

Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update road condition data
§ Time event run every minute

 32

§ Keeps an updated version of road condition data from the Finnish
Transport Infrastructure Agency on S3 with only Oulu specific
locations

o Update variable signs
§ Time event run every minute
§ Keeps an updated version of variable road signs from the Finnish

Transport Infrastructure Agency on S3 with only Oulu specific
locations

The Digitraffic API architecture is illustrated in Figure 22.

 33

Figure 22: Digitraffic API architecture diagram

 34

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- REST
- NodeJS

 35

Fluency API

The Fluency API provides real-time traffic fluency analysis, i.e., traffic congestion
information, for the major road and street network in the Oulu region. The information is
available on the oulunliikenne.fi site as coloured geometry lines drawn on top of a map
following the road network. The different colours represent the state of the traffic fluency
at any given time as the illustration in Figure 23.

Figure 23: Traffic fluency lines in the Oulu region

The analysis is based on data from both the nationwide Traffic Monitoring System (TMS)
maintained by Traffic Management Finland and the regional Traffic Performance Monitoring
(TPM) system maintained by City of Oulu and ELY Centre of North Ostrobothnia.

The TMS data is made available for public use by Traffic Management Finland through their
Digitraffic Road API. This API provides real-time information about average speed of the
vehicles passing the different measurement points installed on the road network.

The TPM data is gathered by vehicle detectors installed in the traffic signals throughout the
major road and street network in the Oulu region. This information includes Key
Performance Indicator (KPI) values for control delay and maximum wait cycles in the queue
of vehicles by the traffic signals. The TPM data is made publicly available on oulunliikenne.fi
site by City of Oulu and ELY Centre of North Ostrobothnia through their TPM API.

The traffic fluency analysis, illustrated in Figure 24, is done based on mean values collected
in 5-minute intervals from both data sources. The result of the analysis is a GeoJSON data
structure including all the road network geometries with the current traffic fluency state.

 36

This GeoJSON is then utilized by a specially designed map server to create map tile-based
content for the oulunliikenne.fi service to display the information to the end user.

Figure 24: Traffic fluency calculation architecture diagram

Traffic fluency is analysed for a pre-defined set of road geometries in the Oulu region which
are maintained by City of Oulu and ELY Centre of North Ostrobothnia. These geometries
have additional meta data attached to them, defining how and what data source to use for
the specific geometries. Those geometries that use TMS data for the fluency calculations
have the TMS station id, name, direction and the speed limit of the road it represents. Those
geometries that use TPM data for the fluency calculations have the TPM intersection and
lane information attached for the primary lanes, including main turning lanes like off ramps
where applicable.

TMS based traffic fluency calculation is based on the average speed that the TMS station for
that part of the road is measuring and the speed limit. The traffic fluency has 4 states:

- Green - normal conditions - average speed is less or equal to 9km/h below speed
limit

- Yellow - light traffic congestion - average speed is above or equal to 10km/h and less
or equal to 24km/h below speed limit

- Red - heavy traffic congestion - average speed is above or equal to 25km/h below
speed limit

- Grey - unknown conditions - average speed could not be determined

TPM based traffic fluency calculation is based on 2 Key Performance Indicator (KPI) values,
control delay and maximum wait cycles, measured by the traffic signal devices. The traffic
fluency has 4 states which are determined by the weaker of the two KPI values as defined
here:

- Green - normal conditions - control delay is less than 60 seconds or max wait cycles
is zero

- Yellow - light traffic congestion - control delay is larger than or equal to 60 seconds
and smaller than or equal to 120 seconds or max wait cycles is 1

- Red - heavy traffic congestion - control delay is larger than 120 seconds or max wait
cycles larger than 1

 37

- Grey - unknown conditions - neither KPI could be determined

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

 38

TPM API

The Traffic Performance Monitoring API (TPM) provides a REST API for Key Performance
Indicator (KPI) values gathered by traffic light detector devices in the Oulu region. The KPI
values are maintained by Dynniq who provide an Apache Kafka server that the TPM API
connects to.

KPIs are grouped by device and detectors, where a device represents an intersection and
the detector a specific data gathering point. The device name "devName" usually starts with
the city name followed by the intersection number, e.g., "OULU108". If one device is
controlling multiple intersections, there may be multiple numbers. The detector name
"detName" usually includes the direction of arrival, the distance in meters from the stop line
and lane identification. These values are separated by an underscore "_", e.g., "D4_60_1M".
Some KPIs, so called signal group KPIs, do not have a detector and are identified by the
signal group name "sgName" instead.

The TPM Kafka consumer subscribes to a predefined list of KPI topics and receives values for
these KPIs whenever they are published by the server. KPIs have different update cycles and
all values will therefore not be updated as the same time. More information about the
available KPI values and their update cycle can be found in the official documentation
provided by Dynniq.

KPI values are written into an AWS Kinesis stream when received by the TPM Kafka
consumer. Kinesis is used to control the throughput of the KPI values written into AWS
DynamoDB, as the Kafka server can dump a large amount of KPI values at the same time to
the subscribed topics which would cause a high write peak of values to the database in
return. The Kinesis stream will flatten this peak and by doing so save on cost, as the
DynamoDB writes cost quite a lot when doing tens of thousands of writes simultaneously.
The write throughput is configured to be able to handle writing of all KPI values before the
next batch of values come in.

The TPM Kafka consumer is implemented using Docker as it needs to keep running 24/7
listening to incoming KPI values. The consumer consists of a single Docker container running
on AWS ECS Fargate.

The TPM REST API provides endpoints for fetching values by KPI as well as filtered by the KPI
device and/or detector for more granularity. The API is documented using OpenAPI and can
be viewed here.

The TPM REST API is implemented using the Serverless framework and it consists of the
following:

- API Gateway
o Public API also used by other Oulunliikenne APIs, e.g., the Eco-counters API

and the Fluency API
- RESTful API endpoints using AWS Lambda

o Get values by KPI name

 39

o Get values by KPI name and device name
o Get values by KPI name, device name and detector name

- AWS Kinesis stream handler using AWS Lambda
o Reads the Kinesis stream and write KPI values into AWS DynamoDB

The TPM API architecture is illustrated in Figure 25.

Figure 25: TPM API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS Kinesis
- AWS DynamoDB
- AWS ECS
- Docker
- REST
- NodeJS

 40

CDA API

The Content Delivery API (CDA) provides data from the Contentful Content Management
System (CMS), and is utilized for navigation menu items in the oulunliikenne.fi service UI as
seen in Figure 26 and Figure 27.

Figure 26: Menu items provided by the CDA API

Figure 27: External links provided by the CDA API

The CDA API works as a proxy for the Contentful CDA API and converts the Contentful data
models into a representation better suited for use in the oulunliikenne.fi service.

The menu items and link are managed in the Contentful admin interface and are accessed in
real-time by the oulunliikenne.fi site, which means that any updates to the content will
reflect to the site almost immediately.

The CDA API is built using the Serverless framework and consists of the following:

- GraphQL API

 41

o Public API used by the API Gateway
o Queries for fetching menu items and links for the UI
o Schema and data models can be viewed here

The CDA API architecture is illustrated in Figure 28.

Figure 28: CDA API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- GraphQL
- REST
- NodeJS

 42

CMA API

The Content Management API (CMA) provides a data management layer for the Contentful
Content Management System (CMS), and is utilized by the traffic disruption/announcement
tool used by Oulunliikenne.

The CMA API works as a proxy for the Contentful CMA API and also acts as a mapper
between the Contentful data format and the format used by the oulunliikenne.fi tool. User
authentication for the tool is implemented using the Contentful OAuth2 service which
means that every user has to have an Contentful account in order to use the tool. The
authentication request is made directly to Contentful and any request to the CMA API is
required to include the authorization header which is verified by Contentful when trying to
access and/or modify data.

The CMA API is built using the Serverless framework and consists of the following:

- GraphQL API
o Protected API used by the Oulunliikenne tool
o Queries for managing traffic disruptions/announcements

The CMA API architecture is illustrated in Figure 29.

Figure 29: CMA API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- GraphQL
- REST
- NodeJS
- OAuth2

 43

Maps API

The Maps API provides a unified way to produce vector tile protocol buffers of GeoJSON
based data created and managed by other Oulunliikenne APIs. Vector tiles is a technique
also utilized by OSM that allows packaging geographic data into smaller chunks, i.e., tiles.
Digitransit utilizes this in the UI for drawing the map component. Protocol buffers is a data
format developed by Google that optimizes data serialization for smaller and faster data
transfer.

The Maps API uses a GeoJSON Vector Tile library to slice the source GeoJSON data provided
by the Oulunliikenne APIs into vector tiles, then serializes the vector tiles into protocol
buffers and servers the binary files through a AWS CloudFront CDN that caches the files for
a configurable amount of time.

These vector tile protocol buffers (VTPBF) are used by the oulunliikenne.fi user interface to
draw all kinds of elements, e.g., icons and geometry lines following the road network. All
Oulunliikenne APIs that provide content to be drawn on the map in the user interface
maintains a GeoJSON file in an AWS S3 bucket that the Maps API can read and convert into
VTPBF files when requested.

The Maps API is built using the Serverless framework and consists of the following:

- AWS CloudFront CDN
o Entry point for the API
o Caches VTBPF files at the edges of the AWS network
o If requested file not found in cache, it delegates the request to a Lambda at

Edge function
- AWS Lambda at Edge function

o Generates the VTPBF files
o Stores them in an S3 bucket for caching

- AWS S3 bucket
o Storage for generated VTPBF files
o Acts as a second cache layer if the file is no longer cached in the CDN but the

source data hasn’t changed

The Maps API architecture is illustrated in Figure 30.

 44

Figure 30: Maps API architecture diagram

Technologies:

- AWS CloudFront
- AWS Lambda at Edge
- AWS CloudWatch
- AWS S3
- NodeJS

 45

GTFS API

The General Transit Feed Specification API (GTFS) provides downloadable assets for public
transportation schedules and associated geographic information.

The GTFS assets are updated by uploading a zip-file to an AWS S3 bucket which triggers an
event handled by an AWS Lambda function that splits the data into 2 separate new zip-files
that are stored in another S3 bucket which serves as the backend for an AWS CloudFront
CDN.

The GTFS API is built using the Serverless framework and consists of the following:

- AWS CloudFront CDN
o Entry point for downloading the assets
o Caches them until the cache is cleared by a new version of the assets being

uploaded
- AWS Lambda function

o Triggered by a new GTFS zip-file upload to S3 o Splits the file into 2 separate
assets

o Uploads them to another S3 bucket
o Clears the CDN cache

- AWS S3 buckets
o One for uploading new GTFS zip-files (private)
o One for storing the downloadable asset zip-files through the CDN (public)

The GTFS API architecture is illustrated in Figure 31.

Figure 31: GTFS API architecture diagram

Technologies:

- AWS CloudFront
- AWS Lambda

 46

- AWS CloudWatch
- AWS S3
- NodeJS

 47

HFP API

The High Frequency Positioning API (HFP) provides real-time location data of public
transportation vehicles in the Oulu region as seen in Figure 32.

Figure 32: Real-time positions of public transportation vehicles

The HFP API gets its information from FARA by polling their APIs at an interval of once every
2 seconds. The data is then pushed to an AWS IoT MQTT broker on a vehicle number and
route ID basis, providing the option for any client to listen to only specific vehicles or routes
if needed. This implementation is similar to that of Digitransit, which only provides location
data for the Helsinki region at the moment.

The AWS IoT service provides a message broker implementation based on the MQTT
connectivity protocol, for lightweight publish/subscribe functionality, that is able to serve all
users in real-time. The client can subscribe to all vehicle locations, specific vehicle numbers
or routes.

The user interface communicates directly with the IoT service and does not go through the
proxy API. The IoT service requires the client to be authenticated and have the necessary
access to subscribe to and receive location events. As all oulunliikenne.fi users are
anonymous, we utilize the AWS Cognito service behind the scenes to create an anonymous
user with the required permissions for the IoT services. This authentication is necessary to
prevent anyone from also publishing new events to the IoT service, which is something only
the backend services are allowed to do.

The HFP API is built using the Serverless framework and consists of the following:

 48

- AWS Lambda function
o Triggered every minute
o Polls FARA APIs for location data and pushes it AWS IoT
o Runs for approximately 1 minute and does as many as 30 polling to FARA,

after which it shuts down and a new Lambda function is triggered by
CloudWatch. This is done as Lambda functions have a maximum runtime of 5
minutes, after which they are automatically shut down. This function should
be converted into a Docker container and be run on AWS ECS instead as it
would be better suited for handling this kind of continuous polling jobs.

- AWS IoT MQTT broker
o Delivers real-time public transportation vehicle locations to users

- AWS Cognito
o Provides anonymous user authentication for AWS IoT

The HFP API architecture is illustrated in Figure 33.

Figure 33: HFP API architecture diagram

Technologies:

- AWS Lambda
- AWS CloudWatch
- AWS IoT
- MQTT
- REST
- NodeJS

 49

Road-signs API

The Road-signs API provides information about variable road signs found in the Oulu regions
as seen in Figure 34.

Figure 34: Variable road signs in the Oulu region

The Road-signs API fetches the information from national Digitraffic service operated by
Traffic Management Finland. The Roads-signs API fetches the details through the
oulunliikenne.fi Digitraffic API which filters the found data in the national Digitraffic service
to include only ones in the Oulu region.

There are two types of variables road signs: speed limits and warning sign. All signs have a
unique icon displayed on the map that indicates either the speed limit at that section of the
road, or what kind of warning is found ahead.

The Road-signs API updates a GeoJSON file for the sign locations once every minute from
the Digitraffic API, which in turn caches the data found in the Oulu region for the same
amount of time. This is done both to prevent high traffic peaks to the national Digitraffic
service and to improve the performance of loading the data in the service, as Digitraffic
always returns all variable road signs nationwide.

Warning signs are not currently used as a part of the journey planning, e.g., to find
alternative routes where some hazard would affect the travel time significantly.

The Road-signs API is built using the Serverless framework and consists of the following:

- GraphQL API
o Public API used by the API Gateway

 50

o Queries for fetching all road signs as well as individually from the Digitraffic
REST API

o Schema and data models can be viewed here
- Scheduled events

o Create GeoJSON of variable road signs
§ Timed event run every minute
§ Generates a GeoJSON structure for the locations to be used by the

Maps API when UI renders them on the map

The Road-signs API architecture is illustrated in Figure 35.

Figure 35: Road-signs API architecture diagram

Technologies:

- AWS API Gateway
- AWS Lambda
- AWS CloudWatch
- AWS S3
- GraphQL
- REST
- NodeJS

 51

Infrastructure
The entire oulunliikenne.fi service is hosted on AWS using many of the different services
that AWS provides. The main architectural principle of the service is to have separate
independent microservices for all the feature areas identified in the service. This
architecture allows for each component in the service to be developed and maintained
independently which reduces costs, minimizes breaking changes and simplifies updating the
service reducing the time it takes to bring new features to the service.

Another architectural design choice is to favour so called serverless or fully managed
services that do not require managing any servers, physical or virtual ones, which greatly
reduces the amount of maintenance tasks that would otherwise have to be performed in
order to keep the servers up to date with recent security patches etc. AWS provides many
services that follow this principle e.g., Lambda, DynamoDB, ECS Fargate.

The service components also use the same technologies and services as much as possible to
keep a unified architecture design while maintaining the flexibility of using something
purpose built when necessary e.g., AWS IoT Core for MQTT brokers and AWS Kinesis for
data streams.

Infrastructure changes are managed on two (2) levels, globally and individually for each
service component. The global level is for service wide infrastructure components like S3
buckets, VPC network configurations, CloudWatch dashboards etc. While the service
component level is used to manage most of the infrastructure needed to each component.
Both levels use the infrastructure as code (IaC) principle, meaning almost everything in AWS
has been created and is managed using either Terraform (global level) or CloudFormation
(service level). Very few resources have been created manually and they are documented in
the infrastructure repository. The IaC principle also helps keeping infrastructure changes
automatically documented and version controlled in the repositories.

Terraform is used for the global infrastructure components because it’s easier to
understand and use than CloudFormation which is used on the service level only because of
the Serverless framework which uses it under the hood. It also helps separating the two
levels by using different tools, however, the idea of them both is very similar; to define
resources and their configuration as logical blocks of code that are read by command line
tools which sync the state to AWS via the AWS APIs.

 52

Environments
There are two (2) separate environments of the service, one for testing new features and
performing quality assurance tasks and one for production. Both environments are hosted
on the same AWS account but separated in terms of resources and networking.

The testing environment user interface can be accessed using the following link
https://next-dev.oulunliikenne.fi/. There are currently no restrictions on who can access this
page as it contains only publicly available data.

The production environment user interface can be accessed using the following link
https://oulunliikenne.fi/.

Both environments have the same features, although the testing environment can be a bit
ahead in the development cycle at times, but some features are disabled in the testing
environment or in some cases not collecting or receiving data.
Disabled features currently only include parts the TPM API as the Kafka consumer is quite
resource heavy and would end up costing too much to keep it running at all times. The
feature can be enabled when needed. Naturally all other components depending on data
provided by the TPM API will not have up to date data and may display old or no
information in the user interface.
There are also features that collect or receive no data in the testing environment. These
currently only include parts of the Cameras API and Harja API. The traffic cameras that get
their images from Viria Oy are currently not receiving data as Viria only has the capability to
send the images to one location. The same is true for the Harja API which currently does not
receive data in the testing environment, but the maintenance tasks are still available
because they are streamed from the production database into the testing database to be
able to test new features related to the maintenance tasks.

The environments share two (2) things, location information of both public transport
vehicles and maintenance vehicles. Both of these are managed through the AWS IoT Core
service two which both environments connect. Technically it is possible to separate the
functionality for these as well, but for the moment the features for updating the vehicle
locations are enabled only in production and the testing environment is configured to
connect to production when displaying the data in the user interface.

Other differences between the environments are related to the infrastructure resources and
update intervals for features that fetches new data periodically. Resources are configured to
use less CPU and RAM in the testing environment and the periodic data retrieval interval is
15 minutes instead of the 1 minute that is configured for production.

In addition, the testing environment is partly shut down during nights and weekends in
order to save on running costs when nobody is using it. The user interface is completely shut
down and not accessible during this time and no new data is fetched 3rd party sources. All
APIs are functional but may provide old and outdated information.

 53

Deployment
Deployment of the service is handled by automated Continuous Integration / Deployment
(CI/CD) pipelines that are connected to the Github repositories. As the service is split up into
many smaller components, each of these components has its own CI/CD pipeline that
operates on its own and is also connected to the components own Github repository. This
way, making updates to only 1 of the components doesn’t require the entire service to be
redeployed saving time and money while minimizing the risk of breaking changes.

While all components have their own CI/CD pipeline, they are very similar due to the
uniform technology choices of the individual components. There are effectively two (2)
types of pipelines: 1) Serverless pipelines that deploy AWS Lambda functions behind API
Gateways 2) Docker pipelines that deploy containerized components in AWS ECS Fargate
clusters.

Most components use the Serverless scheme as they consist of APIs and event triggered
tasks, which fits well into the AWS Lambda architecture. Docker is used only for specific use
cases where some technical requirements exist that fits better into the AWS ECS
architecture. These limitations are e.g., long running tasks that AWS Lambda does not
support.

All CI/CD pipelines are built using the AWS CodePipeline service, which is a fully managed
service for automating build and deployment workflows. These pipelines are configured per
component in Terraform and deployed separately for environments in AWS. The pipelines
follow the same branching scheme for the Github repositories, namely the “develop”
branch is deployed to the testing environment and the “master” branch to the production
environment. All commits to these branches are automatically processed by the pipelines.

 54

Figure 36: Serverless CI/CD pipeline visualisation

Figure 37: Docker CI/CD pipeline visualisation

